数的整除: 基本概念和符号: 整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。 常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”; 整除判断方法: 能被2、5整除:末位上的数字能被2、5整除。 能被4、25整除:末两位的数字所组成的数能被4、25整除。 能被8、125整除:末三位的数字所组成的数能被8、125整除。 能被3、9整除:各个数位上数字的和能被3、9整除。 能被7整除: 末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。 逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。 能被11整除: 末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。 奇数位上的数字和与偶数位数的数字和的差能被11整除。 逐次去掉最后一位数字并减去末位数字后能被11整除。 能被13整除: 末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。 逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。 整除的性质: 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。 如果a能被b整除,c是整数,那么a乘以c也能被b整除。 如果a能被b整除,b又能被c整除,那么a也能被c整除。 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。 二年级下册数学思维训练题100道 余数、同余与周期: 同余的定义: 若两个整数a、b除以m的余数相同,则称a、b对于模m同余。 已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。 同余的性质: 自身性:a≡a(mod m); 对称性:若a≡b(mod m),则b≡a(mod m); 传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m); 和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m); 相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m); 乘方性:若a≡b(mod m),则an≡bn(mod m); 同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c); 关于乘方的预备知识: 若A=a×b,则MA=Ma×b=(Ma)b 若B=c+d则MB=Mc+d=Mc×Md 被3、9、11除后的余数特征: 一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3); 一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11); 费尔马小定理: 如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。 分数与百分数的应用: 基本概念与性质: 分数:把单位“1”平均分成几份,表示这样的一份或几份的数。 分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。 分数单位:把单位“1”平均分成几份,表示这样一份的数。 百分数:表示一个数是另一个数百分之几的数。 常用方法: 逆向思维方法:从题目提供条件的反方向(或结果)进行思考。 对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。 转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。 假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。 量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。 替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。 同倍率法:总量和分量之间按照同分率变化的规律进行处理。 浓度配比法:一般应用于总量和分量都发生变化的状况。 ![]() |
1
![]() 鲜花 |
1
![]() 握手 |
![]() 雷人 |
![]() 路过 |
![]() 鸡蛋 |
业界动态|佰企网
2025-04-30
2025-04-30
2025-04-30
2025-04-30
2025-04-30
请发表评论